Disinfection management
COVID-19 disease (SARS-CoV-2 virus)

Virus forges on, as world hunts solutions

Ron Roobroeck
https://www.linkedin.com/in/ronroobroeck/
FACT SHEET
COVID-19 disease (SARS-CoV-2 virus)

- **Taxonomy:**
 - COVID-19 is caused by the virus SARS-CoV-2. This virus belongs to the Coronaviridae

- **Structure:**
 - Coronaviruses are **65-125nm** in diameter, encapsulated viruses with a crown-like appearance under an electron microscope, due to the presence of spike glycoproteins on the envelope

- **SARS-CoV-2** is a β-coronavirus.
 - β-coronaviruses also include SARS-CoV and MERS-CoV, other acute lung-injury causing diseases
 - SARS-CoV-2 is most closely related to SARS-CoV
Consensus Hierarchy

Most Resistant

- Geobacillus stearothermophilus
- Bacillus subtilis
- Bacillus anthracis

- Hypro Technical kills the Bacillus Subtilis with a certitude of > log 3.18

Most Susceptible

- Novel coronavirus (2019-nCoV)
- MERS-SARS

Report: Decon-X effect on bacteria and viruses Created by Decon-X microbiologist Lars Corlin Christensen
Globally, as of 9:45am CEST, 7 May 2020, there have been 3,634,172 confirmed cases of COVID-19, including 251,446 deaths, reported to WHO.
Physical and chemical resistance of the virus

- In the absence of any ventilation, SARS-CoV-2 remains viable in aerosols for 3 hours, with median half-life 1.1-1.2 hours
 - Aerosols differ from droplets because of their smaller size, which allows them to stay suspended in the air for much longer
- SARS-CoV-2 was most stable on plastic and stainless steel, with viable virus detected up to 72 hours (median half-life of 5.6 hours on steel and 6.8 hours on plastic) in the absence of any intervention (eg. no disinfection of surfaces).
- No viable virus could be measured after 4 hours on copper and after 24 hours on cardboard.
- Importantly, on all surfaces and in the air, exponential decay in virus titer was recorded over time.
The Importance of Environmental Decontamination

- flat surfaces (bedside tables, locker tops,...) are cleaned more often than small vertical surfaces, i.e. door handles and light switches
- walls and electronic equipment are not routinely cleaned but can still harbor potential pathogens
- organisms such as MRSA/MRSE, C. difficile, *Acinetobacter* and Vancomycin-Resistant Enterococci (VRE) can persist on surfaces in the environment – even after discharge cleaning – for significant periods of time, facilitating their transmission between people, patients, staff and the environment
The importance of the disinfection management: THE OPTIONS

- Strict hand hygiene
- Importance of masks
- Manual cleaning
- Air disinfection
- Surface disinfection
- Whole “room” disinfection
 - H2O2 Nebulisation
 - UV Disinfection Robot
 - UV Lamps
The importance of the disinfection management: THE OPTIONS

- Strict hand hygiene
- Importance of masks
- Manual cleaning
- Air disinfection
- Surface disinfection
- Whole “room” disinfection
 - UV Disinfection Robot
 - UV Lamps
 - H202 Nebulisation
Cleaner air means cleaner surfaces and hands

- Hand hygiene and surface disinfection have long been the international gold standard for infection control in “healthcare environments”.
- But as our hospitals/hotels/venues become more crowded, infections become harder to treat, and costs become unmanageable, **traditional protocols need reinforcement.**
Close Loop Disinfection

BODY
- **GETTING CONTAMINATED:** Breathing, Touching
- **SPREADING CONTAMINATION:** Coughing, Sneezing, Talking, Breathing, Touching, Shedding

HAND
- **GETTING CONTAMINATED:** Touching surface/body, Contaminated Air settling
- **SPREADING CONTAMINATION:** Touching

SURFACES
- **GETTING CONTAMINATED:** Contaminated Air settling, Touching
- **SPREADING CONTAMINATION:** Re-suspension, Touching
The importance of the disinfection management: THE OPTIONS

- Strict hand hygiene
- **Importance of masks**
- Manual cleaning
- Air disinfection
- Surface disinfection
- Whole “room” disinfection
 - UV Disinfection Robot
 - UV Lamps
 - H2O2 Nebulisation
Different types of masks exist
Surgical Masks vs. FFP2

- **Surgical masks (3-PLY)** are loose fitting, covering the nose and mouth
 - Designed for one way protection, to capture bodily fluid leaving the wearer
 - Example – worn during surgery to prevent coughing, sneezing, etc on the vulnerable patient
- Surgical masks are NOT designed to protect the wearer
- they do not protect against airborne infectious agents such as viruses
 - they will not prevent the wearer from being potentially infected by COVID-19.
- Respirators are tight fitting masks, designed to create a facial seal
 - **Non-valved respirators** provide good two way protection, by filtering both inflow and outflow of air
 - **Valved respirators** will only protect the individual wearing it but should never be given to a possible patient, as it will not protect the environment
- protects the wearer from aqueous and oily aerosols, smoke, and fine dust
 - is also more effective at protecting against airborne infectious agents such as COVID-19 and SARS
Filter Capacity
removes x% of all particles that are 0.3 microns -300 nm- in diameter or larger

N95 (95%) = FFP2 / P2 (94%)
N99 (99%) = FFP3 (99%)
N100 (99.97%) = P3 (99.95%)

• The most commonly discussed respirator type is N95. This is an American standard managed by NIOSH – part of the Center for Disease Control (CDC).

• Europe uses two different standards. The “filtering face piece” score (FFP) and the P1/P2/P3 ratings. Both standards are maintained by CEN (European Committee for Standardization).
The importance of the disinfection management: THE OPTIONS

- Strict hand hygiene
- Importance of masks
- Manual cleaning
- Air disinfection
- Surface disinfection
- Whole “room” disinfection
 - UV Disinfection Robot
 - UV Lamps
 - H202 Nebulisation
The importance of the disinfection management (cont’d)

- **Cleaning** is an essential **first step** prior to any disinfection process
 - the use of a neutral detergent solution is essential for effective cleaning
 - removes dirt
 - prevents the build-up of biofilms
 - disinfectants must be prepared and diluted according to the manufacturer’s instructions
 - too high and/or too low concentrations reduce the effectiveness of disinfectants
 - high concentrations of disinfectants may damage surfaces
 - always start:
 - from the cleanest areas to the dirtiest ones
 - from higher to lower levels
The importance of the disinfection management: THE OPTIONS

- Strict hand hygiene
- Importance of masks
- Manual cleaning
- **Air disinfection**
- Surface disinfection
- Whole “room” disinfection
 - UV Disinfection Robot
 - UV Lamps
 - H2O2 Nebulisation
Novareus Protect 1050

- Has been independently tested and shown effective at reducing MS2 Bacteriophage, a surrogate for SARS-CoV-2 (COVID-19), by 99.99% in 15 minutes.

- Designed for continuous cleaning of the air in large spaces and rapid remediation in situations with a high risk of infection,
 - patented ultra-low energy plasma technology
 - combined with a triple-stage filtration system from Camfil®.
 - is a non-selective, rapid killing technology, it offers a unique and safe solution to kill airborne viruses 24/7, reducing the risk of disease and infectious outbreaks
The importance of the disinfection management: THE OPTIONS

- Strict hand hygiene
- Importance of masks
- Manual cleaning
- Air disinfection
- **Surface disinfection**
- Whole “room” disinfection
 - UV Disinfection Robot
 - UV Lamps
 - H2O2 Nebulisation
Choice of the disinfection products

EVALUATION of the PRODUCTS CHEMISTRY

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Security</td>
<td>Moderate</td>
<td>LOW</td>
<td>LOW</td>
<td>LOW</td>
<td>LOW</td>
<td>LOW</td>
<td>Moderate</td>
<td>HIGH</td>
</tr>
<tr>
<td>Action field - disinfection</td>
<td>Narrow</td>
<td>Moderate</td>
<td>BROAD</td>
<td>Moderate</td>
<td>Moderate</td>
<td>BROAD</td>
<td>BROAD</td>
<td>BROAD</td>
</tr>
<tr>
<td>Corrosion</td>
<td>LOW</td>
<td>HIGH</td>
<td>HIGH</td>
<td>LOW</td>
<td>HIGH</td>
<td>LOW</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>Cleaning capacity</td>
<td>Moderate</td>
<td>HIGH</td>
<td>HIGH</td>
<td>LOW</td>
<td>LOW</td>
<td>LOW</td>
<td>HIGH</td>
<td>HIGH</td>
</tr>
<tr>
<td>Rinsing</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>Environmental issue</td>
<td>NO</td>
<td>NO</td>
<td>YES</td>
<td>Moderate</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>Stability after dilution</td>
<td>HIGH</td>
<td>LOW</td>
<td>Moderate</td>
<td>NA</td>
<td>Moderate</td>
<td>Moderate</td>
<td>HIGH</td>
<td>NA</td>
</tr>
<tr>
<td>Irritation</td>
<td>Moderate</td>
<td>HIGH</td>
<td>HIGH</td>
<td>Moderate</td>
<td>HIGH</td>
<td>HIGH</td>
<td>Moderate</td>
<td>NO</td>
</tr>
</tbody>
</table>

Moderate: 3-4
LOW: 1-3
BROAD: 10-9
HIGH: 11-15
NA: Not applicable
4. Choice of the disinfection products (cont’d)

<table>
<thead>
<tr>
<th>Chemical Disinfectants</th>
<th>Acids (hydrochloric acid, acetic acid, citric acid)</th>
<th>Alcohols (ethyl alcohol, isopropyl alcohol)</th>
<th>Alddehydes (formaldehyde, paraformaldehyde, glutaraldehyde)</th>
<th>Alkalis (sodium or ammonium hydroxide, sodium carbonate)</th>
<th>Biguanides (chlorhexidine, N,N,N',N'-tetraethyl-3,4-dihydroxypropylbiguanide, Virosan, Virosan, Hibitor)</th>
<th>Halogens (hypochlorite, iodine)</th>
<th>Oxidizing Agents (hydrogen peroxide, peroxycylic acid, Tectatrain, Wilkin-S, Oxy-Sept 3337)</th>
<th>Phenolic Compounds (Lyosol, Cynet, Aniphyl, Tektor, Pheno-fok’s)</th>
<th>Quaternary Ammonium Compounds (Boccal, Zephalin, Diquat, Farvosol, D-226)</th>
</tr>
</thead>
<tbody>
<tr>
<td>mycoplasmas</td>
<td>++</td>
<td>++</td>
<td>+</td>
<td>++</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>gram-positive bacteria</td>
<td>+</td>
<td>+</td>
<td>++</td>
<td>++</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>gram-negative bacteria</td>
<td>+</td>
<td>++</td>
<td>++</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>pseudomonads</td>
<td>+</td>
<td>++</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>rickettsiae</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>enveloped viruses</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>chlamydiae</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>non-enveloped viruses</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>fungal spores</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>picorna viruses (i.e. FMD)</td>
<td>+</td>
<td>N</td>
<td>+</td>
<td>N</td>
<td>+</td>
<td>N</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>parvoviruses</td>
<td>N</td>
<td>N</td>
<td>+</td>
<td>N</td>
<td>+</td>
<td>N</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>acid-fast bacteria</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>bacterial spores</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>coccidia</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>prions</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

LEGEND
- ++: highly effective
- +: effective
- : no activity
- : limited activity
- N: information not available

Note: Removal of organic material must always precede the use of any disinfectant.
The importance of the disinfection management: THE OPTIONS

- Strict hand hygiene
- Importance of masks
- Manual cleaning
- Air disinfection
- Surface disinfection
- Whole “room” disinfection
 - H202 Nebulisation
 - UV Disinfection Robot
 - UV Lamps
The Importance of Environmental Decontamination

- there has been an increased interest in the development of new „whole-room“ environmental decontamination technologies (3)

- Whole Room Disinfection is the ability of a given disinfection technology to thoroughly reach all surfaces, nooks and crannies in a room or given space that it is intended to disinfect.
 - supplement of standard cleaning and infection control procedures
 - aim: providing enhanced hygiene

- Best results are shown with H₂O₂ decontamination
 - Log 3-5 reduction (killing 99.9% up to 99.999% of all micro-organism in the room)
 - Non corrosive, non-toxic, no residues, environmental friendly (H₂O₂=O₂+H₂O)
Whole Room Disinfection
UV Disinfection

- Ultraviolet or UV light comes in three varieties.
 - UVA causes changes to skin pigmentation
 - UVB alters the DNA of the skin and is the component of sunlight that can lead to skin cancer.
 - UVC light is more dangerous. UVC affects the DNA and RNA of all organisms, including micro-organisms, and can be deadly.
 - UVC cannot be used on the human body to combat a virus, as it would kill the host as well.
 - It can be used to clean empty spaces, and is in common use for operating rooms, water supplies and passenger aircraft.
Conclusion

- Strict hand hygiene - Alcohol gels everywhere
- Importance of masks - for Staff and Personal (Guests?)
- Manual cleaning – with strict protocol (all surfaces horizontal and vertical)
- Air disinfection – should be on a continuous basis
- Surface disinfection – Should be implemented after manual cleaning
- Whole “room” disinfection (After each stay of a guest?)
 - H202 Nebulisation
 - UV Disinfection Robot
 - UV Lamps
- Every day clinical testing of the personal/staff before entering the hotel?
 - Covid 19 rapid test
- Air-conditioning and filter replacement
- Testing of the hotel guest before entering the hotel?